
J .  Fluid Mech. (1976), vol. 75, part 3 ,  p p .  419-448 

Printed in  Great Britain 
41 9 

Nonlinear surface waves in closed basins 

By JOHN W. MILES 
Institute of Geophysics and Planetary Physics, 

University of California, La Jolla 

(Received 21 July 1975) 

The Lagrangian and Hamiltonian for nonlinear gravity waves in a cylindrical 
basin are constructed in terms of the generalized co-ordinates of the free-surface 
displacement, {qn(t)} = q, thereby reducing the continuum-mechanics problem to 
one in classical mechanics. This requires a preliminary description, in terms of q, 
of the fluid motion beneath the free surface, which kinematical boundary-value 
problem is solved through a variational formulation and the truncation and 
inversion of an infinite matrix. The results are applied to weakly coupled oscilla- 
tions, using the time-averaged Lagrangian, and to resonantly coupled oscillations, 
using Poincarb’s action--angle formulation. The general formulation provides for 
excitation through either horizontal or vertical translation of the basin and for 
dissipation. Detailed results are given for free and forced oscillations of two, 
resonantly coupled degrees of freedom. 

1. Introduction 
The primary end of the following study is the construction and impIementation 

of the Lagrangian L(q, q) for nonlinear gravity waves in a cylindrical basin, 
where q = {a,($)} is a column matrix of the generalized co-ordinates defined by 
the expansion of the free-surface displacement in a complete set of eigenfunctions 
(normal modes) that are determined by the linear theory. 

The construction of Lrequires the determination of {q5n(t)} = 9, the generalized 
co-ordinates for the fluid motion, in terms of q and q. We obtain the solution of 
this kinematical problem in $ 2  in the form +(q, q) = Z(q) q, where Z(q) is a square 
matrix that may be expanded in powers of q. This result, which reflects the 
linearity of the kinemutical boundary-value problem for prescribed q (non- 
linearity in the velocity enters only through the dynamicul condition of 
uniform pressure at the free surface), is formally exact; however, the explicit 
determination of Z requires the inversion of an antecedent matrix equation, 
which in turn requires truncation at some finite power of q. 

We construct L(q,q) in $ 3  and invoke Hamilton’s principle to obtain the 
second-order differential equations for (qn( t ) } .  We then go on, in $4, to obtain 
the momentum matrix p = aL/aq and the Hamiltonian H(q, p). Capillary waves 
could be accommodated by incorporating the free-surface energy in both H and L 
but would require a description of the variation of the surface tension for waves 
of finite amplitude. 

The perturbation pressure, which does not enter the formulations of $$3 and 4 
27-2 
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(the explicit invocation of the dynamical free-surface condition is replaced by 
Hamilton’s principle), is calculated in 95 and used to construct the Lagrangian 
L*(q,+), following Luke (1967) and Whitham (1974, 513.2). We find that the 
first-order differential equations for q and + implied by L, exhibit a strong 
structural similarity to those for q and p implied by H .  The two formulations are 
related by the transformation p = d(q) +, where the square matrix d is deter- 
mined by the kinematical boundary-value problem of Q 2. 

The availability of either L or H reduces the water-wave problem to an 
equivalent problem in classical mechanics, which then may be attacked by the 
elegant methods developed by Hamilton and his successors - notably Poinear6 
(1892-99) - and, in the present century, by the Russian school of nonlinear 
mechanics (see Minorsky 1947). The resulting formulations are relatively terse 
and are naturally expressed in terms of universal parameters that are super- 
ficially independent of the particular basin cross-section and eigenfunctions. 

As a first example, we consider (in Q 6) weak coupling of the normal modes and 
use the average Lagrangian to determine all amplitudes to second order (in the 
amplitude of the perturbed mode) and the corresponding corrections to the 
natural frequencies. This problem goes back to Rayleigh (1915), who obtained 
results for two-dimensional, deep-water waves, and has been solved by Tadj- 
bakhsh & Keller (1960) for two-dimensional, by Verma & Keller (1962) for 
rectangular, and by Mack (1962) for axisymmetric basins of finite depth. The 
present results are applicable to basins of arbitrary cross-section and finite depth 
and point to certain errors and oversights in some of the earlier work. 

The power and simplicity of procedures based on the average Lagrangian are 
perhaps most apparent (in the present context) in the treatment of resonant 
interactions (cf. Whitham 1967; Simmons 1969); in particular, it leads naturally 
to the determination of integral (or adiabatic) invariants. The efficient construc- 
tion of these invariants for free oscillations is expedited by starting from the 
Hamiltonian, rather than the Lagrangian, and invoking Poincar6’s (1892, $6) 
transformation to action and angle variables. If only two modes are resonantly 
coupled, this procedure leads directly to two invariants (one of which is simply H 
by virtue of conservation of energy) and permits the formal reduction of the 
problem to quadrature (cf. Whittaker 1944, 55193ff.). We carry this procedure 
through in some detail (in $7) for the simplest case, in which: the natural fre- 
quencies of the two modes stand approximately in the ratio 2: 1, the coupling is 
quadratic, and the solution can be expressed in terms of elliptic functions. This 
problem has been widely studied in various physical contexts [see Rott (1970) 
for a delightful mechanical example and references to other examples], but the 
present discussion appears to contain some novel elements, at least in the context 
of water waves.? 

We remark that the coupling is cubic, and the analysis is correspondingly more 

t The general problem of resonant interactions goes back at least to the nineteenth 
century, when it was studied by Korteweg (1897) in a paper that I have been unable to 
obtain but which is partially summarized by his student Beth (1913). Its profound impli- 
cations for mechanics appear to have been recognized originally by Poincar6 (1892); see 
Brillouin (1960). 
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complicated, if the natural frequencies are approximately equal. The classical 
prototype is the spherical pendulum, and forced oscillations of the cross-polarized 
(but otherwise identical) modes in a circular tank have been treated by Hutton 
(1963) by reduction of the modal equations to those for an equivalent pendulum 
(Miles 1962). 

The practical treatment of resonant interactions in closed basins demands 
consideration of the forcing mechanism and of dissipation. Perhaps the simplest 
method of excitation in the laboratory is either horizontal or vertical translation 
of the basin (cf. Benjamin & Ursell 1954; Chester 1968; Chester & Bones 1968); 
in any event, it  is the simplest for theoretical treatment, and we incorporate it in 
the formulations of $0 3-5. Horizontal translation enters the problem through 
an appropriate generalized force, whereas vertical translation (or, more pre- 
cisely, acceleration) enters as a component of the apparent gravitational field. 
We consider resonant forcing of a pair of resonantly interacting modes (the 
configuration of $ 7), with the forcing frequency approximately equal to that of 
the dominant mode, in $ 8. 

Dissipation is small for those configurations that permit ready observation of 
nonlinear wave motion and is typically important for any given mode only in the 
neighbourhood of resonance. The corresponding term in the equation of motion 
for the ntli mode then is proportional to Pnqn (see $ 3), where Pnis the logarithmic 
decrement of the normal mode and may comprise the effects of boundary-layer 
friction, surface contamination and capillary hysteresis (Miles 1967). 

It seems appropriate to remark that, although the results presented here stem 
ultimately from classical mechanics, t,hey were stimulated by Whitham’s (1967, 
1974) work on nonlinear dispersive waves on an unbounded surface. The essential 
distinction between these waves and those considered here is, of course, that 
between continuous and discrete spectra. 

2. Kinematical problem 
We consider irrotational gravity waves in an inviscid liquid of density p that 

fills a rigid cylindrical basin B of cross-section S to a quiescent depth d.t Let x 
and y be horizontal and vertical co-ordinates in a reference frame fixed in B, with 
y = q(x, t )  at the free surface and y = - d at the bottom, n the outwardly directed 
normal to the fluid boundary, and $(x, y, t )  the relative velocity potential 
(Vq5 = fluid velocity relative to B) .  The kinematical boundary-value problem 
then is described by 

V 2 @ =  0 (x in X, -d  < y < q), (2.1) 
n.V@=O on B, @v-Vq.V$=rt  on y = q ,  (2.2 a, b) 

which may be derived by requiring the integral 

XI = ~ / / / 0 2 d ~ d Y  2 -/j(I),=,rt@ (2.3) 

t The formal development that follows, in particular, (2.8)-(2.11), remains valid for 
variable depth, but the explicit results (2.12)-(2.19), (3.3), (4.4) and (5.4) depend on the 
separation of variables that is implicit in (2.6)-(2.7). 
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to be stationary with respect to the variation 64 for prescribed 7 (Dirichlet's 
principle; cf. Serrin 1959). 

Now suppose that 

q ( x 7  t )  = q n ( t )  $ n ( x ) ,  4(x, ~7 t )  = #n(t)  X n ( X ,  Y), ( 2 . 4 ~ ~  b )  

where qn and #n are generalized co-ordinates, (@,} and {xn} are the eigenfunctions 
(normal modes in the linear approximation) determined from (2.1) and ( 2 . 2 ~ )  
according to 

( V 2 + k i ) l l r ,  = 0, n.V$n = 0 on as, kn = Iknl, (2 .5a,b,c)  

and x n ( x ,  y) = $Jx) sech knd cosh k n ( y  + d )  (n not summed), (2.7) 

and repeated dummy indices are summed over the complete set of eigenfunctions 
except as noted. We remark that {ko, @o, xo)  = (0,1, I} is a non-trivial member of 
the complete set for the expansion of 4; however, it  does not enter the kinematical 
problem, for which qo = 0 may be inferred directly from the constraint of constant 
volume. 

Substituting ( 2 . 4 )  into ( 2 . 3 )  yields 

I = B d m n 4 m 4 n - d m n q m 4 n  ( 2 . 8 ~ )  

&+'k+ - q'd+, (2.8b) 
where 

d m n  = S - ' / l ( X n ) , = q $ m d f l j  &n = S-'//dSJp -d  V x m . V x n d y ,  ( 2 . 9 a , b )  

+ = (q5n} and q = (Qn} are column matrices, +' and q' are their transposes (row 
matrices), k E [dmn] is a symmetric square matrix with the dimensions of wave- 
number (inverse length), and d = [d,,,] is an asymmetric, dimensionless, square 
matrix. Invoking the aforementioned variational principle yields 

from which it follows that 

where k-1 is the inverse of k,  and 1 is an asymmetric square matrix with the 
dimensions of length. 

The Taylor series obtained by substituting ( 2 . 4 ~ )  and (2.7) into (2 .9a7b)  and 
expanding the integrands in powers of 7 are derived in the appendix. The elid 
results, together with the corresponding series obtained from (2. I I) ,  are given by 

aI/a+ = k+-q'd = 0, (2.10) 

+ = k-ld'q 14, (2.11) 

d m n  = smn + Qlmn i n  ql+ +Qjtmn G Q j qt + . . * 2 
(2.12) 

+ + [ Q j l m n ( ~ m ~ ~ ~ + d n ~ ~ ) + ~ j ~ m n ( i m +  dn))Iqjql+*.-j ( 2 . 1 3 )  

dmn = smn 4 n  + ( G m n  dm 4 + Qmn) ql 

and 
emn = ' m n a m -  Qmnam"npi + 4[- Qjlmnan ki 

- DjIntn(aCt, + a n )  + 2 Q n i ( Q i j m  + D j m i a i a m ) a n ]  Qjqi + * .  * 9 (2-14) 

where dn = an1 = kntanhknd = w i / g ,  (2.15) 
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wn is the natural (radian) frequency of the nth normal mode, the indices m and n 
are not summed in any of (2.12)-(2.15),  and 

q m n  = s-1//+1 $m 1c.n d ~ ,  c j l m n  = 8-1 jj 1c.j $l +m $n (2.16 a, b )  

and 

Qmn = S - l / / + , V 1 c . m . V $ n d S ,  Djlmn = S- l / /$ j$ lV$m.V$ndS,  ... (2 .17a ,b )  

are correlation integrals. Integrating (2 .17a)  by parts [see (A7) and (A8)] yields 

(2.18) 

A complete reduction of Djlnln to  a form like (2.18) is not possible, but auseful 
recursion formula is given by (A 9 ) .  

The eigenfunctions for two-dimensional waves in the tank 0 < x < n//k are 
given by 

kn = nk, +n = 2icosnkx (n = 1 ,2 ,  ...). (2 .19a ,  b )  

* * * 

Dlmn = $Clmn(k; + k: - k;).  

The corresponding correlation integrals are elementary. 

3. Lagrangian formulation 
The kinetic energy of the fluid motion described by (2 .4)  and (2 .11)  is 

where a = [amn] = dk-ld' = dl (3 .2 )  

is a symmetric matrix with the dimensions of length. Substituting (2 .12)  and 
(2 .14)  into (3 .2 )  yields 

( 3 . 3 ~ )  a m n  = amnam +almn ql+ B..ilmn q j  4i + * * 7 > 

almn = Clmn- Dlmnaman, ajailmn = -Djlmn(am + a n )  + 2DjmiDlnifii*Zman. (3*3b,  C) 

The potential energy of the free-surface displacement is 

where li and d are the horizontal and vertical accelerations of the basin, g is the 
gravitational acceleration, the quantity in square brackets is the specific work 
done against the d'Alembert force (which is conservative in the sense that P is 
independent of the history of the displacement from y = 0 to y = q) ,  and 

n n  

Qn = -&.xn, X ,  = S-lJJ x$-,dS, 9 = g+d. (3 .5a ,  b,  c )  

The Lagangian implied by (3 .1) - (3 .4)  after factoring out pS is 

L (PS)-'(T-VV) = ~ a ~ n q m q n - ~ S q n q n + Q n q n .  (3 .6 )  
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Invoking Lagrange's equations, 

yields the second-order differential equations (cf. Whittaker 1944, $28) 

a m d m  + 4mnqlqm + Hn = Qn, (3.8) 
where 4mn = ~ ( ~ m n , ~ + a n l , m - ~ l m , n ) ,  +m,n E aatrnlaqn- (3.9 a, b )  

Dissipation may be incorporated by calculating the corresponding generalized 
forces from the dissipation rate. We assume that the latter may be approximat,ed 
by 2pSF, where 

P = *In a m  an (3.10) 

is Rayleigh's dissipation function (Whittaker 1944, $93) after factoring pS and 
neglecting cross-products (m + n),t and in = g.EOn/nwn, where LYn is the logarith- 
mic decrement of the nth normal mode. The negative of the corresponding 
generalized force is aF/i3qn = PnQn, which may be added to the left-hand side 
of (3.8). See Miles (1967) for the calculation ofZn. 

4. Hamiltonian formulation 

(2.11), (3.1) and (3.4) after factoring out,pSare 
The generalized momenta and the corresponding Hamiltonian derived from 

Pn (~f9- l  (aTIadn) = a m n a m  = dnm$m ( 4 . 1 ~ )  

or p = a q = d +  (4.171) 

and H (PW' (T + V = @mnPmPn + 4 H n q n -  Qnqn, ( 4 4  
where h [A,,] = d'-lkd-l = 0 - 1  (4.3) 

is a symmetric matrix with the dimensions of wavenumber. Substituting (3.3) 
into (4.3) yields 

( 4 . 4 ~ )  

where 4mn = Qmn - C,mn dm f n  (4.4b) 
Amn = awn km + 4 m n  4i + %tmn qi 91 + - * 

and Ajtmn = qlmn(4rn + f )  - 2cjmiDtni +fm - 2Gniqrni 

+ 2Ci,, qni k;. L, k;, . (4 .44  

Substituting (4.2) into Hamilton's equations, 

23% = - aH/aqn, an = aH/aPn, (4.5a, b )  
yields @n + H n .  -I- Mlrn,nP,Prn = Qn, 9, = AmnPrn. (4.6a, b)  

t Neglecting cross-products, and hence modal coupling, in the dissipation function is 
justified in the present context if L?,, = O(q,,/d) ? O(E) as E J. 0. In particular, the modal- 
coupling terms that would appear in the equations of motion if terms like $,,, $,, (m + n) 
were included in F would be eliminated by the averaging operations in $3 6 and 7. 
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5. Perturbation pressure 

basin, is given by 

and comprises a spatially independent component, -pdo(t), that is not directly 
determined by the preoeding formulation. This component may be determined 
by averaging the free-surface condition p = 0 over y = r] or, equivalently, from 
the Lagrangian (Luke 1967; Whitham 1974, $13.2)  

The perturbation pressure, including that induced by the acceleration of the 

(5.1) P(X,Y, $1 = - - P ( ~ .  x + w +  A+ 4v4 . V 4 )  

Substituting (5 .1)  into (5 .2)  and invoking the Euler-Lagrange condition 
aL,/aqo = 0 (note that this is not inconsistent with qo = 0 in the present context, 
in which both the kinematical and the dynamical conditions are derivable from 
L,) yields 

(5 .3)  

where Lmn, = S-' ( Vxm . V X , ) ~ = ~  dS  ( 5 . 4 ~ )  

40 = Qo - (1 - 8on) don 4 n  - +R;nn,o$n. 4,s 

ss 
= am%(/; + kg) + [qmn(&k;+ lgnk$)  + q m n ( &  + i n ) ]  QI+ .*. * (5.4b) 

Invoking the remaining Euler-Lagrange equations (note that L, does not 

- = o ,  aL* ----= 0, (5.5a, b)  

yields d n m d m + ~ n + + ) & m , n 4 t 4 m =  Qn, d m n d m =  R b , # m ,  (5.6a, b )  

where d,,, Igmn and Q, are given by (2 .9)  and (3 .5 ) .  We note that (6 .63)  is equiva- 
lent to (2.10) and that (5 .6a ,  b )  bear a strong structural similarity to (4.6a, b ) ,  to 
which they are related by the transformation p = d+. Eliminating {q5n} between 
(5 .6a,  b )  yields (3 .8)  after a non-trivial reduction. 

The Grst-order differential equations (5 .6)  have the virtue of not requiring the 
prior inversion of the matrix k, although this inversion is implicit in their solu- 
tion; moreover, L, provides do without the necessity of a separate, ad hoc 
argument. On balance, however, it  appears that either the Lagrangian formula- 
tion of $ 3  or the Hamiltonian formulation of $ 4  offers significant advantages 
vis-h-vis the formulation provided by L, in the present context. 

depend directly on q), 
a ah, a ~ ,  

aqn d t a d n  a+n 

6. Weakly coupled free oscillations 
The simplest problem governed by (3 .6)  is that of weakly coupled free oscilla- 

tions, for which ti = d = 0 (g = g, Qn = 0) .  The linear approximation yields 
uncoupled oscillations at  the natural frequencies (w: = g/a,), which then provide 
the basis for a perturbation solution. 

Let q1 = A,  cos wt and w = w, represent the Gst approximation to the solution 
of (3.8) for any particular mode (n = 1 does not necessarily imply the dominant 
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mode) with A, = O(ed),e < 1.t The quadratic (in ql) terms in the differential 
equation then excite time-independent and second-harmonic components; 
accordingly, we consider a second approximation of the form 

qn = S,, A, cos wt + A,, + A,, cos 2wt, (6.1) 

in which A,, and A,, are O(e2d). Substituting (6.1) into (3.6), setting y = g and 
&, = 0, invoking (3.3a) for am,, neglecting terms that are O(e6), and averaging 
over the period 27r/w, we obtain 

(L> = 4w2{(sa1A4 + 2amAk2 + hm11A?AmO + (allm- t f inz l l )A?Am2 

+ i%,d3  - 4dA2, + 2AmOAmo +Am,Am,)* (6.2) 

Requiring (L} to be stationary with respect to each of A,,, A,, and A, (which is 
equivalent to the invocation of Hamilton’s principle for the assumed motion) 
yields 

in which the fist approximation w2 = g / a l  has been invoked, and 

Cw2{a1 +am11Amo + (%l, - *a,,,) A,, + B.CtllllA3 - $71 A1 = 0. (6.4) 

Substituting (6.3) into (6.4) and solving for w2 on the assumption that A, + 0 
yields 

( w / a J 2  = 1 + [Ba1(4am -4-’ (4a11, -~m11)2--amllamll-ala11111.  (6.5) 

The determination of the coefficients alln, amll and allll in (6.3) and (6.5) may 
require extensive, albeit straightforward, calculation for a particular configura- 
tion; nevertheless, the terseness of the preceding solution is rather striking in 
comparison with the usual perturbation solutions (cf. Tadjbakhsh & Keller 
1960; Verma & Keller 1962; Mack 1962). 

Substituting (6.1) into (2.11), invoking (2.14) for f,,, and then calculating 
4, from (5.3) we obtain (n not summed) 

qJm = - 6,,wA, sin wt + wa,(~D,,,~~, A2, - 2A,,) sin 2wt 

4, = $w2A2,{ - ( 1  - T-2) + ( 3  + T-2) cos 2wt) (T = tanh k,d).  
(6.6) 

and (6.7) 

Carrying out the calculation for the dominant two-dimensional mode in a basin 
of length n/k [see (2.19)] and replacing A, by A / 4 2  yields (the second-order term 
is identically zero for n = 1 since C,,, = 0) 

(6.8) 7 = A cos wt cos k x  +&kA2[Tb1 + T + T-l(3Tw2 - 1 )  cos 2wt] COB 2kx, 

$ = &wA2[ - S-,wt + (2 - &F2) sin2 2wt] - (w /k )  AS-, sin wt cos kx coshk(y + d )  

- & ~ ~ S - ~ s i n 2 w t  cos2kxcosh2k(y+d) (X = sinhkd), (6.9) 

(6.10) 

~d yields a scaling equivalent to that of $ 7 ;  however, the 
results in this section are independent of the choice of E ,  which serves only as an order-of- 
magnitude parameter. 

and ( W / W , ) ~  = I + &k2A2( 9T-4 - 12T-, - 3 - 2T2). 

t Choosing E such that A ,  
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Setting T = 1 in (6.10) yields Rayleigh's (1915) result for deep-water waves. Com- 
paring (6.8) and (6.9) with theresuIts cited in equation (27.63) ofthe Encyclopedia 
of Physics (Wehausen & Laitone 1960) indicates that the signs of the 

cos 2 d  cos 2mx and sin 2 d  cos 2mx 

terms therein (v = w, m = k )  should be reversed [Professor Wehausen (private 
communication) agrees]. A similar comparison with Tadjbakhsh & Keller (1960) 
indicates that W; - wc2 = T - T-1 in their equation (30) should read w;+wt2.  
It appears that this error may have affected their third approximation, since the 
deep-water limits (k,d f 00) of b,, and b,, in their equation (38), & and --A 
respectively, disagree with the corresponding values, 4 and 4, implied by Ray- 
leigh's (1915) solution; however, their result for w agrees with (6.10). 

The calculation of (w/wl)2 fiom (6.5) for the rectangular mode considered by 
Verma & Keller agrees with the result given by their equations (36) and (39). 

7. Resonantly coupled free oscillations (w2  + 2w1) 

e2d) if w, = w2 
approximates 2w, (there is no loss of generality in choosing the subscripts 1 and 2), 
and q1 and q2 then are resonantly coupled.? Harmonic motions are still possible 
but only for special initial conditions, and in general the two modes must be 
expected to have slowly varying amplitudes and phases. 

Of the several asymptotic techniques that are available for attacking this 
problem, the most efficient (at least for the derivation of integral invariants of the 
motion) appears to be the introduction of the action and angle variablesj, and?, 
through the canonical transformation (cf. Whittaker 1944, 3 193; Mettler 1963) 

qn = (2wnfin/g)'cos~n, Pn = - (2g+n/wn)'sinan, (7.la, b )  

The perturbation solution of $6 fails (in particular, [An2[ 

under which (4.5) goes over to 

&, = - aH/a?,, +, = aH/ah,. (7.2a, b)  

Substituting (7.1) into (4.2) with y = g and Q, = 0 and retaining only the first 
two terms in the expansion (4 .4~)  yields 

H = wn+n + &m(2gWJ~rn~n)' (/+m+n)' c o s ~ ~ s ~ ~ r n s i n a n  + O(c4)* (7.3) 

The first approximation, obtained by substituting H = w n j n  into (7.2), is 
described byb, = 0 and in = w,. The next approximation contains terms [after 
expressing the trigonometric products in (7.3) in terms of cos (al &am +an)] that 
oscillate with frequencies of approximately [ wl f w, w,I (with all four sign 
combinations), of which (by assumption) only w2 - 213, is small compared with w,. 
The slow variations of+, and an therefore are significant only for n = 1,2 and 
may be calculated by neglecting those trigonometric terms with arguments other 
than 2yl -a2 or, equivalently, by introducing fast and slow times and averaging 

-f This is a special case of the second-order resonant interaction defined by 

w,--o,+o, = 0. 
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over the former to obtain (where, here and subsequently, n is summed over 1 

(7.4a, b) and 2 )  

where (7.5) 

is a nonlinear-coupling parameter (in which It,,, = A,,, has been invoked.) A more 
detailed justification of the argument follows from the consideration that 
Hamilton’s action integral, I L dt, is dominated by the slowly oscillating terms, 
which contain the factor I / ( @ ,  - W,). The resulting error factor in the end results 
as s 4 0 with (by hypothesis) ql/d,  q2/d and p = O(E) is 1 + O(s) uniformly with 
respect to t .  

<H> = Unbn + ~ + 1 + t  COB p ,  f i  = 2 ~ 1 - ~ 2 ,  

= (9/2w,)+ {It112 - (02/2@,) It,,,) + 4 ( S / W l ) +  (412 - R 2 l l )  

Substituting the approximation (7 .4a )  into (7 .2 )  yields 

6, = 2~j,+$sinp, 6, = - ~ f i , + t ~ i n p ,  (7.6a, b )  

+, = 0, + cos p, f Z  = w2 + @y!,fi;f cos p. (7.6c,  d )  

It follows from (7.6a, b)  that the action integral (or adiabatic invariant) 

j, + 2+, = d ( 7 . 7 4  

is a constant of the motion.? Moreover, it follows from the conservation of 
energy that H ,  and hence 

(H)-Qw,d  =~l(wl-)O,+%+~cOsp) = 2, (7.7 b) 

also is a constant of the motion. The availability of these two integrals permits the 
integration of (7 .6)  in terms of elliptic functions. Before proceeding further, 
however, we find it expedient to introduce the dimensionless, slowly varying 
amplitudes and phases d, and a,, such that 

q,(t) = s$d,(r)cos(w,t+a,(r)) (n = 1 , 2 ) ,  r = &cult, (7 .8a,b)  

through the transformation 

bn = &2gd2w;1dE(r), 9, = W,t+a,(r), (7.9a, b)  
where C = &(gd/E/W:) ( 4 1 2  - A,,,) iEC112d (ki - k: - 3k;)/& (7.10) 

is a dimensionless, O(s) counterpart of V that has been reduced with the aid of 
(2 .15) ,  (2.18),  (4 .4b)  and k, = 4 4 .  

Substituting (7 .9)  into (7 .4b) ,  (7 .6 )  and (7.7) and letting sJ.  0 yields 

2, = at1&, sin p, 2, = -at; sin /I, (7.11 a, b)  

a, = dl cosp, 6, = (dyd,) cosp, (7.11 c,  d )  
dz,+d,a = e E 1 ,  8dq+Lcbz;Lcbz2cosp = A, (7 .12a,b)  

and /3 = 28r + 2a, - a,, (7.13) 

where 6 = ( 2 0 ,  - w,)/cw, (7.14) 

is an O( 1 )  measure of the modal separation, 8 and A are constants of the motion 
that are determined by the initial conditions (there is no relation between R and 

t Whittaker (1944, sI96ff.) uses the term “adelphic [from a&h&o’s or brotherly] 
integral ” for the corresponding invariant of H .  
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R,,), and the dots now imply differentiation with respect to r .  Choosing E such 
that 

T + V = &pSgd2e2(S$q +d%) = ipSgd2s2 (7.15) 

in the limit E J. 0 yields L = 1. 

with 9 = g and &, = 0, averaging over t with 7 fixed to obtain 
We remark that (7.11) also may be obtained by substituting (7.8) into (3.6) 

(5) = &€2gd2(d;al + &d;ci, -d:Joz2 cos p) { 1 + O(E)}, (7.16) 

and regarding d,, dz, a, and az as generalized co-ordinates. This procedure is 
somewhat more direct in the present context, but it does not lead as naturally to 
the invariant (7.12b) [the derivation of ( 7 . 1 2 ~ )  from (7.11) is rather obvious, but 
that of (7.12b) is less so].? 

The range of R in (7.12b) is limited by the constraint ( 7 . 1 2 ~ )  and the require- 
ment that d, and dZ be real (0 < &, d: < 1). The extrema are given by (see 
figure 1) 

d:= l - d 2 ,  d , c o s p = d ,  s inp=O (7.17u, b,c) 

and R = ( 6 + d ) ( l - d 2 )  =A*(&) = --RF(--8), (7.17d) 

where d = +{-6+(62+3)+} =d*, (7.17e) 

the signs in (7.17 d, e )  are vertically ordered, and d* is excluded for T 6 > 1. The 
admissible ranges then are 

R- < A < 0 (6 < -l) ,  ( 7 . 1 8 ~ )  

R - < A < R +  ( - 1 < 6 < 1 )  (7.18 b )  

and 0 < R < &+ (6 > 1). (7.18 c) 

It follows from (7.11) and (7.17) that the extrema R = R,(6) renderd, and an 
constant and therefore correspond to harmonic motions. The equivalent fie- 
quency for qn [see (7.8)] is 

w, + Qcw,&, = nul( 1 + +st*) = no* (n = 1,2).  (7.19) 

It follows from (7.14) and (7.19) that 

w- < w, < (w+) < +wa 

0- < w, < QW, < w+ 

(6 < - l), ( 7 . 2 0 ~ )  

(7.20b) 

( 7.20 c) 

(7.20d) 

where the parentheses around w, in ( 7 . 2 0 ~ ~  d )  imply the aforementioned exclu- 
sions; accordingly, harmonic oscillations with frequencies between o1 and &wz 
are impossible for I 6 I > 1. A straightforward stability analysis reveals that the 
admissible harmonic motions described by (7.17) and (7.19) are stable with respect 
to small perturbations. 

( -1  < 6 < O ) ,  

(0 < 6 < l), 

(6 > 11, 

0- < gw, < w, < W+ 

Qw, -= (a-) < w, < w+ 

t Professor Whitham has pointed out (private communication) that ( 7 . 1 2 ~ ~ )  and 
(7.12b) can be derived from (7.16) through two independent applications of Noether’s 
theorem. 
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2.0 1 I I I I I I I I . .J 

1.6 - 

6 

FIGURE I .  The extrema for A(&), as given by (7.17) and (7.18). 

The anharmonic solutions of (7.1 I)  are conveniently represented by their 
trajectories in an m, j: phase plane (phase is now used in the conventional sense 
of nonlinear differential equations), where 

z = d ; =  1-df (7.21) 

is a dimensionless counterpart of the action variable jl. Eliminating cos p from 
(7.11) with the aid of (7 .12b)  then yields 

(7.22) 

and a1 = -S+Rz- l ,  d2= ( R - S z ) / ( l - z ) .  (7.23a,b) 

It suffices to consider R 3 0, since f(z) remains unchanged if the signs of both A 
and 6 are changed. 

The cubicf(m) has two positive zeros, xl and z2, where 0 < m1 < z2 < 1, if A is in 
one of the admissible ranges (7.18); see figure 2. These zeros coincide if either 
R = it- or R = A, and then are stable singular points (centres) in the phase plane 
(but A = Ri is excluded for T 6 > 1). Representative phase-plane trajectories 
for 0 < R < It, are plotted in figure 3. We observe that the trajectories for h 2 0 
are nested for 6 < 0 but not for 6 > 0. 

The period T, defined as the time for z to go from zl to s2 and back to zl, is 
given by 

4 2  = &?(I -z)-(8z-R)2 =f(z) ( 0  < z Q 1) 
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4 4 ,  

FIGURE 2. The real zeros off(=), 0 < a1 < z2 < 1 ;  see (7.22). 

where = - A2/z ,m2 is the negative zero off, and K is an elliptic integral of the 
f i s t  kind. This dimensionless period is plotted in figure 4. We note the finite limit 

i? +7r( 1 + S2+ 2 S d + ) - t  (A f A+). (7 .25)  

The integration of (7 .22)  for A = 0 and S2 -= 1, for which f(x) has a double zero 

x = (1-S2)sech2{(1-82)f(7-To)} (4 = 0, S2 < l), (7 .26)  

where 70 is a constant of integration. It follows that, for those special initial 
conditions corresponding to A = 0, ql has constant frequency and (for 7 > T ~ )  

monotonically decaying amplitude, such that all of the energy is ultimately 
transferred to the second mode, which then continues to oscillate at its natural 
frequency o2 (since Oi, N 0 as T-+oo). This solution is especially striking for S = 0 
and the initial conditions dl = 1 and dz = 0 at T = T ~ :  the total energy then 

The corresponding amplitude vanishes like (A+ - A)$. 

at c(: = 0, which then is a nodal point, yields 
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0 . S  I .n 
m 

FIQURE 3. The phase-plane trajectories calculated from (7.22). (a) 6 = - 4, for which the 
singular point corresponds to A = A, = 0.110. (b) 6 = 0, for which the singular point 
corresponds to R = A, = 0.385. (c) 6 = *, for which the singular point corresponds to  
R = A, = 0.758. (d) 6 = 1, for which the singular point corresponds to A = A, = 1.185, 
(e) 6 = 2, for which the singular point corresponds to A = A, = 2.113. 

appears initially in the first mode and is ultimately transferred entirely to the 
second mode. 

The integration of (7.22) for all R other than R = A, or R = 0 leads to elliptic 
functions and is considered in some detail by Struble & Heinbockel (1963), whose 
equations (14) and (15) are equivalent to our (7.11) and ( 7 . 1 2 a )  after the 
transformation 

d, = &'B, -02, = (p6) - l (p+$):A,  6 = (16~)- ' (2 /3-  l)(p+$)*, (7 .27u ,b , c )  

with p, 6 and 8 on the right-hand sides of (7 .27)  defined as in their paper; however, 
they do not identify the invariant (7.12b) and, perhaps for this reason, do not 
obtain the explicit solution (7.26). This special case 6 = 0 is considered for 
capillary waves by McGoldrick (1970), who, following Simmons (1969), does 
identify both invariants. The case A = 6, for which ci, = 6 (so that q2 has constant 
frequency), also appears to merit special mention. 

The specific application of the results in this section depends essentially on 
the parameters c and 6, (7 .10)  and (7.14). It is readily verified that C,,, = 0 for 
a rectangular basin except for the wavenumber pairs: (u) k,, = Zk,,, k,, = 2k,,; 
( b )  k,, = 3k,, $: 0, klZ $: 0, k,, = 0; (c) k,, = 2k,, $. 0, k,, $: 0, k,, = 0. It can be 
demonstrated that w, = 2 0 ,  is impossible for (b)  and (c) and possible for (a)  only 
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I I 

FIGURE 4. The dimensionless period for the slow modulation, as given by (7.24). 

in the shallow-water limit k,d J. 0. The results of this section are typically in- 
adequate in this limit, however, since more than two modes may be resonantly 
coupled. In  particular 

w, = nk(gd)t (1 - Qn?Pd2 + . . .) (nkd 4 0) (7.28) 

for two-dimensional waves in a tank of length r/k, and all modes for which 
nkd < 1 are resonantly coupled (cf. Bryant 1973). 

Mack (1962) obtains results equivalent to (7.17) and (7.19) for resonant 
interactions between the first and third (fourth) axisymmetric modes in a circular 
cylinder of radius a and hla + 0.198 (0,347). A straightforward calculation 
(numerical values of the Bessel-function correlation integrals are given by 
McIntyre i972) yields + = - 0.043 ( - 0-01 1) for the corresponding coupling 
parameter(s).t Mack evidently overlooks the necessity for special initial condi- 
tions for harmonic response and does not consider anharmonic motion. 

double pendulum sketched in figure 3 of Rott's (1970) paper. 
t These values are an order of magnitude smaller than the value, c/s = 0.48, for the 

28-2 
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8. Forced oscillations (w = ul = 4w2) 

We now suppose that the basin is oscillating in the x direction with displace- 
ment amplitude X and frequency w + w1 + 40,. The generalized force calculated 
from (3.5a, b )  then is 

Q, = w2Xxncoswt (n = 1,2). (8.1) 

The response in the limit e $0 may be posed in the form (7.8), but it proves more 
convenient (at least for numerical integration) to introduce the alternative 
representation 

(8.2 a, b )  

Substituting (8.1) and (8.2) into (3.6) with 2 = g, neglecting terms that are O(s4), 
and averaging over t with r fixed yields 

q,(t) = ed{C,(7) cosnwt + S,(r) sin nut}, 7 = &cot. 

(L)  = ~ce2d2g{n-1(S,Cn - C,S,) - v,(C; + S;) 
- (Cq- S:) C, - 2S1C1S.J + &dw2Xx,C,, (8.3) 

where the dots imply differentiation with respect to 7 ,  n is summed over 1,2 ,  and 

(8.4) 

Note that w may be approximated by w1 and conversely throughout this section 
except in the numerator of v,. Invoking Lagrange's equations for (L), with C,, C,, 
S,, and S,  as generalized co-ordinates, and incorporating damping (see last 
paragraph in 3 3), we obtain 

c, + a1C1 - v1X1 + s, c, - S,C, = 0, (8 .5~)  

8, + a,S, + v1C, + c,c, + s,s, = p, (8.5b) 

c, + 2a,C2 - 2v,s, - 2s,c1 = 0, (8.56) 

8, + 2a,S, + 2v,c2 + cq- sq = 0, (8.5d) 

v, = (w: - n2w2)/&wf = Z(w, - nw)/cwn ( n  = 1,2). 

where a, = 9,/7r., (8.6)f 

p = (€&dg)-1w2xXl = 2(W4/€9d)2 (R1,,- R2,,)-1Xx1, (8.7) 

and E is as yet undefined. We proceed on the hypothesis R,,, > R,,, and choose E 

such that ,u = 1; the corresponding choice for R,,, < Rzll is p = - 1, which would 
require only that the signs of C, and S, be changed throughout the remainder of 
this section. 

Harmonic solutions with no damping 

Setting a, = 8, = 0 and C, = A ,  (constant) in (8.5) yields 

A,(v,+A,) = 1, 2v2A2+A2, = 0. (8.8a, b )  

Eliminating A ,  between (8.8a, b ) ,  introducing 6 from (7.14), and solving the 
resulting equation for v1 (rather than solving it as a cubic in A,) yields 

~1 = &Ai'{i+6A,k [I(I-6A,)*+2A;l]&). 03-91 

f The damping parameter u, is unrelated to the phase constant a, in $7, which does 
not appear in this section. 
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FIGURE 5. The response curve for forced harmonic oscillations, as calculated from (8.9). 
The dashed portions of the curves, over which (8.14) is violated, represent unstable motions. 
The upper and lower branches are the shoulders of two tilted resonant peaks, which are 
rendered fkite by damping (see figure 7). (a) 6 = 0. ( b )  6 = 1. (c) 8 = 2. 

The response curves calculated from (8.9) for S = 0,1 ,2  are plotted in figure 5. 
The corresponding results for 6 < 0 are obtained by changing the signs of v,, A,  
and A,. The critical values of v,, say vi*), between which (8.8) yields only one real 
value of A,, are given by the two real roots of 

y4-&3-($)3 = 0, v =  VL*)(S) = -vl.+’(-S)=o; (8.10a,b) 

see figure 6. The corresponding values of A ,  and A ,  are 

It remains to consider the stability of the preceding solutions. Substituting 
small perturbations of the form 

cn = An+ cg)(?), En = s p ) ( T )  (8 .12a,b)  
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6 

0, between which the harmonic response FIGURE 6. The critical values of vlr vk*) 
A,(v,) is single-valued; see (8.10). 

into (8.5) with a, = 0 therein, invoking (8.8), linearizing in CF) and IS':), and 
requiring the characteristic determinant of the resulting homogeneous equations 
to vanish yields 

h -v1+A2  0 - A ,  

= 0 ( A  = dld7). (8.13) 
v1 +A2 A A ,  0 

2 4  0 2v, h 

0 -2A,  A -2v2 

Expanding the determinant and simplifying with the aid of (8.8) yields a quad- 
ratic equation for h2, both roots of which must be negative if the perturbation 
is to be stable. It follows from this requirement that necessary and sufficient 
conditions for stabiIity are 

4( v, - 6 )  ( 3v, - 6 )  A; + 2( 46 - 3v,) A,  - 1 > 4 I ( v,  - 6 )  A,  I (3  - 2v,A,)* > 0. (8.14) 

Those portions of the response curves in figure 5 on which (8.14) is not satisfied 
are dashed. We remark that motions that correspond to points on the upper 
branches, although stable, may be difficult to excite; moreover the results are 
restricted by v, = O(1). 

Harmonic solutions with damping 

We now consider the effects of damping on harmonic response with 

v1 = v2 = v (6= 0) and a, = a2 = a;  

the results for more general parametric combinations are asymmetric in v and 
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algebraically more complicated, but otherwise similar. Setting 6, = A!?, = 0 in 
(8.5) and rearranging yields 

(a-X2)C,-(v-C2)S1 = 0, ( 8.1 5 a)  
(v+C2)C1+(a+S2)S1 = 1, (8.15 b)  

2ac2 - 2VX, = 2s,c,, ( 8 . 1 5 ~ )  
2vc2 + Bas, = s; - cq. (8.15d) 

Solving (8.15c,d) for X, and C, and substituting the results into (8.15a,b) 
yields, after some algebraic reduction, 

Cz = p2[~S,C~+&~(Xq-Cq)], X, = p 2 [ - ~ X 1 C l + & ~ ( X ~ - C ~ ) ] ,  ( 8 . 1 6 ~ ,  b)  

c, = vAq(1 -&pZA2,), s, = aAq(1 +*pZA?), (8.17a,b) 

and (8.18) 

where A; = cq + 521, p2 = (a2 + v2)-1. (8.19) 

Solving (8.18) as a quadratic in v 2  yields 

V’ = -a’+&(Aq+Ai’) &(2-Sa2Aq+Ai4)*. (8 .20)  

Substituting v > 0 into (8.17) and the resulting expressions for C, and XI into 
(8.16) yields C, and S, as functions of A,. C, and X, are, respectively, odd and 
even functions of v. Typical response curves given by (8.20) are plotted in figure 7. 
A; is a monotonically decreasing function of v2 if a > 1.085. 

Considering small perturbations with respect to the solution determined by 
(8.16)-(8.18) and (8 .20 )  leads to the characteristic equation [cf. (8.13)] 

Aq[a2( 1 + &p2.42,)2+ v2( 1 - &p2A32] = 1, 

Ih+a-X, -v+c2 s, -c, I 
s1 1 = o .  1 -28, -2c1 h + 2 a  -21, 

v+c, h+a+S, c, 
(8.21) 

I 2Cl - 25, 2v h+2a1 

Stability requires .%?A > 0 for each of the four roots of (8.21). No stable harmonic 
motion is possible in the frequency interval 0 < v < V, if a < a, = 0.319 (va 
decreases from 00 to 0 as a increases from 0 to aA). Two stable, and one unstable, 
harmonic motions are possible for vB < v < vC if a < aB = 0.328. A single, stable, 
harmonic solution exists for all v if a > aB. These regimes are illustrated in 
figure 8 for a = $ ( v , , ~ , ~  = 0.225, 1.291, 1.480). 

Anharmonic solutions 

The differential equations (8.5) may be rewritten in the form 

(8.22) 

where x is  a vector in a four-dimensional phase space and f is a quadratic function 
of x. Forming the scalar product of x and x yields (after some algebraic 
manipulation) 

d(*1X12)/dT = a,[X~-C~-(S,-Xo)”-22a,(C~+S~), (8.23 a )  
where 8, = p/2a1. (8.233) 

It follows from (8.23) that x is bounded and that the maximum possible equili- 
brium amplitude is x, = 2{0, So, 0,O). Moreover, the solution of (8.22) for 

W) +f(x) = {0,1,0, O},  x = {C,, 4, c,, S,}, 
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7 0 I - 3 

V 

FIGURE 7. Response curve for damped harmonic oscillations for 13 = 0 and a1 = az = a, 
as calculated from (8.20). The dashed portions o f  the curves represent unstable motions. 
The response is symmetric with respect to v = 0 (cf. figure 5a). 

a prescribed initial vector xo is unique by virtue of the fact that f is an integral 
function of X. 

The singular points of (8.22), x, a t  which f(x,) = 0, correspond to harmonic 
motions. Heuristic reasoning, supported by numerical integration (see figure 9), 
suggests that the trajectory from any x,, tends to a stable singular point if one 
exists. We consider further only the special case vl = v2 = v, a, = a2 = a, for 
which four possibilities may be distinguished: 
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V 

FIGURE 8. The regimes of stable (-) and unstable (- - -) harmonic motion described 
in $8 for oc = f ( V A , B , C  = 0.225, 1.291, 1.480). 

There is no stable singular point, but a limit cycle may exist, for A ;  see figures 
9(a)  and (b) .  There is one and only one singular point for either AB or C; see 
figure 9(c). There are two stable singular points for BC, and the asymptotic 
limit then depends on x,; see figure 9 (d), for which the trajectory terminates on 
the stable singular point of lower energy, corresponding to the branch B'C' in 
figure 8. Trajectories terminating at the stable singular point of higher energy, 
corresponding to the branch BC in figure 8, also were obtained by numerical 
integration, but only for initial conditions rather close to that singular point 
(such that the graphs of C,, S,, C, and 8,~s. T are almost flat). 

The only analytical solutions of (8.23) that appear to merit further considera- 
tion are the limit cycles for 0 < v < vA.t  These asymptotic solutions (we assume) 
may be constructed as Fourier series, with the fundamental period (for r, not t )  
to be determined aspart of the solution. We proceed to obtain the dominant terms 

t It would of course, be desirable to have an analytical description of the x,, capture 
domains of the two stable singularities in regime BC, but this appears to  be a difficult task. 
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0.1, 
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for the simpIest case: v, = Y, = 0 (6 = v = 0) and a, = a, = a (see figure 9a), for 
which (8.5) reduce to (after some re-arrangement) 

0, + (a - S,) c, + s,c, = 0, 

c2 + 2aC2 - 2s,c, = 0, 

/3,+as,+s,s, = l-C,C,, 
8, + 2as2 - s: = - c:. 

( 8 . 2 4 ~ )  

(8.24 b)  

( 8 . 2 4 ~ )  

(8.24 d) 

Inspection of (8.24) suggests an asymptotic solution in the form (we use 
asymptotic only to describe the limit T+CO, rather than in the more technical 
sense of an asymptotic series) 

( 8 . 2 5 ~ )  

and C,(T) c,, COS (p7 + $ml) + . . . (n = 1,2). (8.25b) 

The frequency parameter pis  unrelated to the parameter defined by (7.13), which 
does not appear in this section. Substituting the (by hypothesis) first approxima- 
tions S, = S,, into (8.24a,b), choosing $, 3 0 (one phase constant in the 
asymptotic solution may be chosen arbitrarily, corresponding to an arbitrary 
origin of T), and equating coefficients of C O S ~ T  and sinpT yields (after Pome 
reduction) 

C,, = 24C,,, $21 = - tan-l(P/2a), (8.26a, b) 

s,, = (2a2 + &p”J, s,, = 3a. (8.27a, b)  

Substituting (8.25) into (8.24c, d), equating coefficients of cos (@T) and sin (mp7) 
for m = 0,2, and invoking (8.26) and (8.27) yields 

C,, = (8, - 8a2)4, 

s , (T)  - s,, + 8,s COS (2pT + $,,) + - -. 

p = (6a)-l[1+ (1 + 288a4)4]4, (8.28a, b)  

4a 2a 

Higher approximations may be obtained by including additional terms in the 
Fourier series (8.25), but the algebraic complexity is formidable. The corre- 
sponding solutions for 0 < Y < v, contain the additional terms S,, COB (PT + $,,) 
and C,, in ( 8 . 2 5 ~ ~ )  and (8.253), respectively (cf. figure 9b). 

Setting a = 2 in (8.26)-(8.28) yields /3 = 1.045 (1.02), S,, = 0.819 (0-794), 

and S,, = 0.147 (0.159); the values in parentheses are provided by numerical 
integration (see figure 9a). The differences between these two sets of numbers 
presumably reflect the effects of higher harmonics in (8.25). 

S,, = 0.750 (0*753), C,, = 0-770 (0.734), C,, = 1.088 (1*002), S,, = 0.165 (0*156), 

This work was partially supported by the Atmospheric Sciences Section, 
National Science Foundation, NSF Grant DES74-23791, and by the Office of 
Naval Research under Contract N00014-69-A-0200-6005. 
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Appendix. Development of d,, and Lmn 
Substituting (2.7) into (2.9a) ,  expanding the integrand in powers of q, and 

invoking (2.4a) for 7 yields (the summation convention does not apply anywhere 
in this appendix) 

d,, = (Scoshknd)-l [[$m$ncosh k,(d+q)dS (A l a )  

V k m .  V$,dS, Dt,, = S-l $m.  V$.,dS, ... . (A5) 
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